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ABSTRACT

Let Xi,..., X, be a random sample from an unknown probability distribution P on the sample
space X, and let § = ¢(P) be a parameter of interest. The present paper gives a “Bayesian
bootstrap” method of obtaining Bayes estimates and Bayesian confidence limits for 4, using
a (non-degenerate) Dirichlet process prior for P. This extends methods and results of Rubin
(1981) and Efron (1982), in that they assume the sample space to be finite and use only a
particular degenerate Dirichlet prior. An asymptotic justification of the Bayesian bootstrap is

given, parallelling results of Bickel and Freedman (1981).

* Work supported by a National Science Foundation Grant MCS80-24649, Office of Naval Research contract
N00014-83-K-0472.



1. Exact Bayesian intervals.

Let X ..,Xn be independent and identically distributed (i.i.d.) according to

1
an unknown distribution P. For convenience take the sample space to be [ = 7,
so that P can be identified with its distribution function (c.d.f.) F. Most

of the results in this report can be generalised to any complete, separable
metric space X.

Let 6 = 6(F) be a parameter functional of interest. We shall be concerned
with Bayesian nonparametric confidence statements about 6, and need to start
out with a prior distribution on the space of all c.d.f.s. A natural class from
which to choose is provided by Ferguson's (1973, 1974) Dirichlet processes; the
class is rich, each member has large support, and basic posterior calculations
are feasible., Thus let

F ~ Dir(aFo), (1.1)
i.e. F is a Dirichlet process with parameter aFo. Fo(.) = EBF(.) is the prior

guess c.d.f. whereas a > 0 has interpretation as prior sample size.

Identify the observed sample S ERRERE with the empirical c.d.f.

F(t) == £ 1I{x, < t}. (1.2)
n i-—
i=1
The posterior distribution of F is

F|F 5 Dir(aF_ + nF). (1.3)
(EB, g etc. indicate statements relative to the chosen Bayesian framework.)

Thus the function

G(t) = Pr{8(F) < t|F) (1.4)
is in principle known. We wish to calculate eLOW’ eUP from the data, satisfying
Pro{8; oy < 8(F) < GUPIF} <1 - 2a, (1.5)
say. Thus
o =c iy, 6_ =cl(1-a) (1.6)
LOW ’ up

are the natural choices; G-l(p) = inf {t: G(t) Z_p}.
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The fact that G above is only rarely explicitly available, however,
necessitates devising computational approximations. The problem becomes much
simpler for the particular case a *~ 0, which is the "non-informative" case
Rubin (1981) and Efron (1982, Ch. 10) consider. (Actually, they consider
only finite sample spaces, but the extension to the present generality is easily
made via the theory of Dirichlet processes.) Then Flg is concentrated on the

observed data values,

n
F(.) = 151 d; 6(xi), (1.7)

with weights (d dn) following a Dirichlet (1,...,1) (uniform on the simplex

1777

of non-negative weights summing to one). It follows that values of 06(F) can
be simulated according to (1.4), i.e. G may be closely approximated by Monte

' } = '
Carlo. (The di s may be simulated as di ei/(e1+...+en), where the e,'s are

i.1.d. unit exponential. If 8(F) = /xdF(x) is the mean, for example, then a

n n n
large number of realisations of 6(F) = Zi=1 dixi = Zi=1 eixi/Zi=1 e

generated, the histogram of these values would approximate G, enabling one to

can be

get good numerical approximations to the interval (1.6).) Rubin (1981) discusses
this point and notes that the resulting approach, though different in interpre-
tation, agrees well, operationally and inferentially, with the ordinary bootstrap
procedure. This may be taken as but another example where Bayesian inference,
starting with a non-informative ("neutral"”, "objective") prior distribution,
resembles classical frequentist inference.

The rest of the report is concerned with the informative case a > O.



2. Approximating the posterior distribution of 9.

For a few parametér functionals the posterior distribution (1.4) can be
evaluated exactly. Section 5 provides calculations for © = F{A}, A a set of
interest, and 6 = F-l(p), the p-quantile. In some other instances can G(F)IE
be simulated directly, i.e. a sequence Yl’ Y2"" being i.i.d. with a distri-
bution equal to or very close to G can be generated, thus enabling one to

LowW’ eUP'

obtain a close approximation to G and to the sought-after 6
Example. Let 6 = JxdF(x) be the unknown mean of F. The exact distribution

of 6 given data can be obtained for some choices of the prior guess Fo, but

the resulting expressions are complicated, making '"exact simulation" difficult.

(This approach would have to use results of the type reached by Hannum,

Hollander, and Langberg (1981) and Yamato (1984), but with Dirichlet process

parameter aFo + ng.) However, the posterior distribution of 6 can be approxi-

i=1 1777

is a fine partition of R - {xl,...,xn}, and yj € Aj' 8' can then be simulated.

d d
Hjort (1985) shows that a o in X implies Dir(am) -+ Dir(a) in the

mated with that of 6' = E x F{x }+ Z =175 F{A }, say, where A A

d
space of probability measures on X, and that fxdFﬁ(x) + [xdF(x) under a mild

extra condition on {am}. This justifies 8 ~ 8' above.

The example illustrates that (1.4) in general will be difficult to obtain
from (1.3) via direct simulation of O(F)IF. A simpler method, which we call
the Bayesian bootstrap (BB) method, is however possible, and is now described.

Note first that
F (t) = E {F(t)lF} = = F (1) +— F(t) (2.1)

* *
is the natural Bayes estimate of F(t). Generate a BB sample X1 ""’Xn+a+1

A *
from FB. (This is easy, provided it is feasible to sample from FO: Xi is from

F° with probability a/(a + n) and is equal to Xj with probability 1/(a + n),

j=1,...,n.) Define



n+a+1l

FB*(t) == I{Xi* < t}, (2.2)
i=1
and evaluate
A % ~ %k
GB = B(FB ). (2.3)
The proposed approximation to G is
A a R
G(t) = Pr*’B{eB < tl, (2.4)

which in practice would have to be evaluated as
R BOOT
G(t) = == I 1{8 <t} (2.5)

BOOT |, B -

~ %
for a large number BOOT of independent drawings 9B b of the type described.

The resulting confidence interval
¢ L) < 8(p) < Era-w) (2.6)
could be termed the BB percentile interval.
The description above assumed a to be an integer. If a = m + B, say,

* A
0< B <1 and m an integer, generate n + m + 2 Xi 's from FB instead, and use

n+m+l

A % 1 * *
= < <
Fp (t) = rogg [151 x, <t} +8 X . 2 t}l.
The motivation for the BB method is as follows. The two conditional
A %k, A

distributions F|§ and FB lF are reasonably similar. In fact, judicious calcu-
lations give
EB{F(t)IF} = Fp(t),
~ % A A
E, {Fy (O)[F} = Fp(¥),

A 1 A ~
VarB{F(t)|F} = 57 Fp®) {1 - Fp(t)},

1
nta+l

var, {F (0 |F} = F(6) {1 - Fy(o}.

Hence, for well-behaved functionals 6 = 0(F) we would expect

8(r) |F * 8(F, ) F, (2.7)



As a point of further comparison. it may be considered a bit annoving

~ A % A
that the skewness of F(t)|F is about twice that of FB ‘F, but they are both

small;

A ~ 2 A A _ N
Eg{F(t) - FB(t)}3|F = et (e D) Fg () {1- FB(t)} {1 ZFB(t)},

A A A l A A A
E*,B {FB*(t) - FB(t)}3|F = Tatat)? FB(t) {1 - FB(t)} {1 - ZFB(t)}.

The next section provides an asymptotic justification for the BB.

Remark 1. Consider once more the non-informative case a close to zero
(or, rather, a/n close to zero). Then the BB procedure advocates taking
bootstrap samples of size n + 1 from the usual f, as opposed to the traditional
size n. This points to the fact that the BB sample size n + a + 1 was chosen

A Ak A
merely to make also the second moments of FIF, FB |F agree.

Remark 2. Even disregarding the small n versus n + 1 controversy, Rubin's
(1981) "simple BB" does not come out of letting a + 0 in the proposed BB of the
present paper. Rubin's method smooths the weights, but rigidly sticks to the
observed sample points (as does the ordinary bootstrap), cf. (1.7), whereas
the more universally applicable method proposed here smooths also outside the

~

data points, using FB.

One may call this paper's BB the informative Bayesian bootstrap and
Rubin's BB the non-informative Bayesian bootstrap, in order to distinguish them.
The remarks above indicate that the present informative version comes much

closer to being a proper Bayesian generalisation of Efron's bootstrap.



3. Asymptotic justification.

Assume first, and mostly for jllustrational purposes, that the sample space 1is

¢inite, say X = {1,...,L}. Let f, = Pr {X, =2}, £, = # {x, = ¢}/n, £ =

i B,¢
(af 2 + nfg)/(a + n). Efron (1982, Ch. 5. 6) observes
f(f—f>+NL(o, L), (3.1)
/H(E-E)lgN(o L) a.s., (3.2)

where E* stems from the ordinary bootstrap and where Zf has elements fQGQm -
fo , and discusses why this may be taken as an asymptotic justification for
a class of inferential procedures based on the bootstrap The above results
rely only on asymptotic theory for the multinomial distribution.

(3.1), (3.2) can now be accompanied by results for the exact and BB

A A koA
approximated posterior distributions f|f, fB If :

]'i ~ A d
(n+a+l) ™ (f - fB)If 3 NL(O, Zfa? a.s., (3.3)
A % A ~ d 2 4
->
(nt+atl) ? (£ - £ |E o N (0 ) a.s. (3.4)

An explanation is needed here: we prefer on this occasion to study the
limiting behaviour of flg, EB*lg in the ordinary frequentist framework,
where the observed frequencies EQ converge, on a set Qo having probability
one, to the true ones, say ftrue,ﬂ' The parameter a may be fixed in (3.3),

(3.4), but can also go to infinity with n, as long as

s P -
fB,Q atn fo,Q * o a+n
5 >
£ will be just ftrue provided a/n * 0.

fg-*f QonQ 3

Now the framework fot (3.3), (3.4) is explained. (3.3) follows from
asymptotic properties of the Dirichlet distribution, whereas (3.4) is essenti-
ally the central limit theorem. Note that exactly the same a.s. set Qo is at
work in (3.2), (3.3), (3.4).

Efron's discussion of the consequences of (3.1), (3.2) (1979, p. 23;

1982, Ch. 5.6) can now be applied to (3.3), (3.4), and provides the asymptotic

justification for the BB procedure.
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Remark 3. It is interesting to note that if only a/vn - 0, then v’E(fQ - fQ)

A

-/n (fQ - fB Q) goes to zero, and
H1E S .5
Ja (£ - £)|f 2 N (0, 2 ) a.s., (3.5)
B L f
/n ;¥ A)|E d N (Otnzlle ) a.s (3.6)
f - f > s .S,
n (g *B L £, rue

Accordingly, four different approaches will lead to the same inferential
statements, up to first order asymptotics: the classical based on f; the ordinary

Efron bootstrap; the proper posterior Bayes; and the BB.

Now consider the extension of the preceding results and conclusions to

X

R. The degree to which (3.1), (3.2) and its consequences have analogues for

X

R is investigated in Bickel and Freedman (1981) and Singh (1981). The
canonical parallel to (3.1) is

/o {F(.) - F()} El>w°{F(.)} in D[-x, «] (3.7)
where W° is a Brownian bridge, seeifor example Billingsley (1968). Bickel and
Freedman (1981) prove the bootstrap companion

o () - F(IMTF $ WOLF()} avs., (3.8)
and conclude that the bootstrap works for well-behaved fundétionals 6'= 6(F).

These results can be parallelled in the present Bayesian posterior context.
Again, we look at limiting properties in an ordinary framework in which §
according to the Glivenko-Cantelli theorem converges uniformly to F = F

true
on a set Qo of probability ome.

Theorem. Let a vary with n in such a way that F, = (aFo + nﬁ)/(a + n) -

B
some F_ on Qo. (Most often, F_ is just Ftiué.)‘Then

~

~ ~d
(nta+D)® (F() - B (OHF 3 WLE (D), (3.9)
~ A A d
() ® (750 - BCONF 2y wOIR (), (3.10)

along every sequence in Qo.



Proof: The seéond statement is within reach of (the triangular version of)
the classical invariance theorem for i.i.d. random variables. The first statement
involves showing finite-dimensional convergence, by looking at Dirichlet distri-
butions, and proving .tightness, which follows by the proof of Billingsley's (1968)

Theorem 15.6, upon noticing that

(n+a+l)? E {F(s, t] - gB(s, t1}? {F(t, u] - EB(t, u]}zlf

< Fpls, ul?, s <t<u. O
~ A % A
Thus the conditional distributions B(F)IF and G(FB )IF will be close to
each other for well-behaved functionals, justifying the BB method. Particular
examples can be worked through, as in Bickel and Freedman (1981). Their
tentative description of well-behavedness (p. 1209) can also be subscribed to
here. Sufficient conditions for
1& A, A d 2
(n+a+l) * {0(F) - G(Fﬁ)}lF ﬁ N(0, 0°) a.s.,
p} A %k A ~ d
(n+a+1)® {6(F. ) - B(F)}F > N(O, 0®) a.s.
B B »B
to hold, for appropriate variance 02, can be written down_ using von Mises
methods, for example as in Boos and Serfling (1980), Parr (1985), who use
Fréchet differentiability, or the more universally applicable machinery of

Hadamard or compact differentiability, as in Reeds (1976) and Fernholz (1983).

Remark 4. If a is fixed, or only a/va - 0, then

N . d
/o {F(.) - F(OMF > w{Fr __ ()} a.s., (3.11)

true

/n {%B*(.) - F()YF *%B W {F__ ()} a.s. (3.12)

true
A conclusion concerning the approximate agreement among-:. the four statisti-

cians referred to in the previous remark.thus can be reached also for X = R

(and for more general spaces).



Remark 5. The functional 8 = 6(F) can depend upon n; the described BB
procedure works specifically for the given n. 8 is also allowed to depend upon

the actual data sample, say 6 = O(F, X "’Xn) (in contrast to simpler ones

1°°
like 68(F) = [xdF(x), o(F) = [[{x - 6(1-‘)}2dF(x)]1/2 ). An example is 8 = sup, |F(t)

- ﬁ(t)l, of importance in connection with confidence bands. Our BB method is
general enough to handle such cases too.

Let us illustrate this comment with a description of how a nonparametric
Bayesian might construct a simultaneous confidence band for F. Consider 6 =

sup IF(t) - ﬁB(t)ll[ﬁB(t) {1- fB(t)}]%. The natural band is

a<t<b

A A A e A A A 5
Fp(t) -ty [Fp(t) {1 - F(e)}17 < F(e) < Fp(e) + £y [F (£) {1 - Fr(6)}]

for a <t <b, where t o ideally would be determined by PrB{G(F, X .,Xn)

100"
would be almost impossible to find. The BB method

1~

<ty JFt=1-o0. Thist,
ists of in haps 1000 values 8. D of 8 " = 17 %) - B (o)
consists of generating perhaps values 0O of O = Supaﬁpﬁb B - Fy

= empirical upper a-point for these 1000

/[ﬁB(F) {1- fB(t)}]%, and using El—a

1
1 ~
realisations instead of t o One may prove that (n+a+l) (tl-a t_a

in this case. (Strictly speaking, this is true provided BOOTn realisations

) + 0 a.s.

are generated instead of 1000 and BOOTn/(n log n) grows to infinity.)

Remark 6. The bootstrap sample size BOOT in (2.5) should of course be
A -l P | A=l n-1
large in order for GBOOT (i1-o), GBOOT (a) to come close to G ~(1-a), G ~ (o).
The investigation of Efron (1985, Section 8) indicates that BOOT = 1000 may be

a rough minimum.

Remark 7. The exposition of the BB method has so far emphasized its use
to construct confidence intervals. There are other uses for (an approximation
to) the posterior distribution, however, a major example being the evaluation

of the usual Bayes estimate (under quadratic loss), §£ = ftdG(t). Closed form



solutions are only available for special cases. An approximation is now possible,
BOOT , .

. A . 1
BB = [tdG(t) = BOOT bfl BB

BOOT need in this case not be as large as 1000 to make the second approximation

a good one, BOOT = 100 may be sufficient, cf. Efron (1985, Section 8).

Remark 8. The starting point for our quest for the construction of
confidence intervals has been (1.6). Sometimes highest posterior regions are
advocated instead, see for example Box and Tiao (1973). In the present case
this would involve approximating the posterior distribution G with one with a
- density g(t), and then letting {t: g(t) > go} be the confidence region, for
appropriate level 8o" This approach makes most sense when g is unimodal, which
it would not be in many important cases here, due to the fact that the posterior
distribution of F places extra weight on the observed data points. This is

1llustrated in Section 5 for the case of the median.

Remark 9. The BB method is easily generalised to for example two sample

situations, To illustrate, let X Xn and Y Ym be samples from respectively

1,..-’ 1,...,

Fy and Fos and assume G(Fl, FZ) = Fl—l(%) - Fz-l(%) is of interest. A Bayes

estimate and a confidence interval for this difference of population medians

A %k *
can be obtained by generating perhaps 1000 realisations of GB = median {X, ,...,

* * * * ~
- ]
xn+a+1} median {Yl ”"’Ym+b+l}’ where the X, 's are drawn from (aFl,o + nFl)
* A
/(a+n) and the T, 's from (bF2 ot sz)/(b+m), and then treating the resulting
b4

histogram as the posterior distribution of 6.

Remark 10. It is perhaps surprising that a simple method like the BB,

constructed merely to make the first and second moments of the exact and the
approximate distributions of F{A} agree for each A C X can work well for the vast

majority of parameter functionals. As indicated in Section 3, this is at least

10



partly the work and the magic of the central limit theorem. This also points
to the possibility.of using '"'small-sample asymptotics' machinery to arrive at
other approximations to the posterior distribution G, for examplé Edgeworth-
Cramér expansions combined with Taylor expansions. Such an approach would be
functional-dependent, however; a primary virtue of the BB is that it is both

simple and versatile. A similar remark of course applies to the usual bootstrap.

Remark 11. The BB has been constructed for situations where the statistician
is willing to approximate the prior uncertainty about the unknown F with a
Dirichlet process, involving only the prior guess Fo and the "prior sample size"
parameter’ a. One can conceivably construct similar bootstrap-like devices for
more complex prior distributions, like mixtures of Dirichlet processes and neutral
to the right processes. This would be wvaluable, considering the difficulty with which

even Bayes point estimates are evaluated in such situations.

Remark 12. A critisism sometimes voiced against the ordinary nonparametric
bootstrap is that it too rigidiy sticks to the observed data points. The Bayesian
bootstrap proposed in this paper provides a generalisation of the ordinary boot-
strap, as indicated in Remarks 1 and 2, towards having the possibility of
smoothing also outside the data, in a reasonable and non-ad hoc way (unless one
discards Bayesian statistics in general as beingltoo ad hoc). Let us point out
that hybrids can be invented. One may take the "strength of belief" constant a,
which in principle is user-defined, to be just an unknown parameter instead,
and estimate it based on the data. A large estimated a should result if the data
fits F° to a high degree; if the data seriously contradicts Fo then the estimated
a should be close to zero. A further de-Bayesification of the Bayesian bootstrap
could allow unknown parameters in Fo too, placing matters in an empirical Bayes

framework, and estimate these too from the data.

11



4. A bias corrected BB percentile interval.

The BB percentile interval cannot be bias-corrected the way this is done for
the ordinary bootstrap case, as presented e.g. in Efron (1982, Ch. 10). In fact,
one can argue that the "bias" 1is already taken care of. If there exists a

smooth increasing transformation h such that

n{6(M} - h(d_, ) § N(z_o, o?), (4.1)
n{o(F, ) - hB ) 5y Nz o, 0%) 4.2)

for some constants zs O, putting eobs = G(FB) for short (these assumptions

appear reasonable in view of the preceding section), then one may deduce

AN

z s - Q_l{G(eobS)} as in the cited reference, but the bias corrected interval

on the h(8) scale,

z(1-0t) (l—a)o’

h(eobs) + zoo -

where z(l-a) = Q-l(l-a) is the upper o-point for the standard normal, happens

o < h(8) < h(eobs) tzo+z

to tranform back again to (2.6) again on the 6 scale:

(1-2)

a[h'l{h(éobs) +z 0+ z o}l

2% A (1-0)
Pr*’B{h(eB ) f_h(eobs) + zoc + z o}

+ z(l-a)} =
o

Pr{N(zo, 1) <z 1-oa.

Even if the above approach had led to something non-~trivial the result
would not have been as trustworthy as Efron's bias corrected percentile
interval is, comparatively speaking. The comments about skewness following
(2.7) would imply that the implicit assumption in (4.1), (A.é), namely
that z, can be taken fo be the same in the two situations, hardly could be
trusted, this in contrast to the ordinary bootstrap framework in which it
is known that the bootstrap approximation usually is good also to the "next

order". It may however be possible to deduce a simple and likely relationship

between the two zo's in (the rephrased) (4.1), (4.2), and then correct the

12



BB percentile interval based on this.

There is another possibility of detecting and repairing a bias, however.
For each in a respectable catalogue of examples there is a known transformation
h, perhaps the identity, such that the posterior expectation of h{8(F)} is
explicitly calculable by some published formula, i.e.

v, = E,[h{6(F)}|F]

is known. The BB procedure considers

A(e) = pr, JIh(OR)) < ) = GnH(e))

and approximates vo with

1 BOOT

5 = reafice) = —= & n{6(F. Py} 4
v, = Jt (t) = BoOT |-, h (FB )} = v, + €, (4.3)

say. Accordingly, if € # 0, then ﬁ is not a perfect estimate of H, the c.d.f.

ﬁ(t + €) 1s a new estimate, this time getting the mean

of h{8(M}|F. H_(t)
right. Hence
i =@ -e<nlom <A -w -e=870 -0
would be a natural corrected confidence interval for h{6(F)}. Transforming back
- we obtain
e ) - € <8(F) < v lmic i@ - o) - el (4.4)
as the bias corrected BB percentile interval for 6(F). Of course this interval
is just (2.6) if € = 0 above.

One can also write down a slightly more general bias and variance corrected

BB percentile interval which also takes into account the value of T°2 =

VarB[h{e(F)}IF] if it is available. Assume that, in addition to (4.3),
.BOOT

A 2 - _ A 2 A - __1__ A
T, J(t vo) dH(t) 500T bfl {h(eB

A perhaps better estimate of G{h-l(t)} is then ﬁs 6(t) = B{t(1+8) + € - vod},

*y 0 1= 12+ 8)2.
o o

since it gets both the mean and the variance right. Using ﬁsls-l(p) =

’

13



{ﬁ_l(p) + v06 - €}/(1 + &) one ends up with

V8 - ¢ -1 h{&'l(l - )} "o'5 B E]
1+ 48

A_l .
h{c " (0} o
L DI e

1 +8

h_l[

(4.5)

5. Some examples.

This section looks briefly into the nature of the BB approximation method,
and compares confidence intervals arising from different prior distributions

in an artificial example.

5.1. A probability.

If 8(F) = P(A) for some set A of interest, then
8(F) |F g BetalaF_(A) + #(x, € &), aF_(a%) + #(x, ¢ O]
Thus (1.5) and (1.6) can be obtained from tables of the incomplete Beta function.
In this case the BB method amounts to approximating the Beta distributiom G
above with that of Y/(n+a+l), Y being binomial [n+a+l, {aFo(A) + #(xi e A)}/(a+n)].
If U is Beta {mp, m(l-p)} and V is Bin {m+l,p}/(m+l), then EU = EV = p,
1

Var U = Var V = -~ p(l-p). U and V differ in skewness and kurtosis, but not

to any dramatic extent:
1
. (mt+l) >  1-2p

skew (U) = s
=2 (p1-p)}?
skew (V) = 1 I 1-2p L 5
(m+1) {p(1-p)}
kurtosis bm 1+l/m

v) = @) @3y {1- ;zi:sy} ,

1 1 - 4p(1l-p)

kurtosis (V) = — 1 p(p) .

Brief investigations have shown the distributions of U and V, and there-
fore confidence intervals based on either the exact or BB approximated distri-

butions, to be remarkably similar even for moderate m, provided p is not too

14



close to zero or one, provided o is not too close to zero, and finally
provided the discréte distribution of V is interpolated. Rather than using
é(t) = Pr(Bin {m+l,p}/(m+l) < t], which jumps at the points j/(mt+l), we
use E{j/(m+1)} = 4pr{Vv < j/(m+1)} + %Pr{Vv < (j-1)/(m+1) } (which is what one
gets if one interprets Pr{V < j/(m+l)} as Pr{V + € < j/(mt+l)} where ¢ is
independent of V and say normal (0, 10_6) ) and interpolate linearly in-
between. Similar modifications to G are advocated in other cases where G

increases in sharp jumps only.

5.2. The median.

The p-quantile functional is another example where it is possible to compute
the posterior distribution explicitly, but the resulting expressions are
complex, and the BB would be much easier to carry out in practice. For simpli-

city only the median 6(F) = F-1

(%) = inf {t: F(t) > %} 1s considered below.
Assume for concreteness that the data points are distinct, say Xy < oeee
< x_. We shall find G(t) = Pry{e(F) < t|F}.

First look at a data point xj. Then

G{x,}

; PrB{e(F) = leF}

]

Prp{F(-=,x;) <, F(-w,xj] > %|F}

Pr{U <%, U+V>%}=Pr{U <% W<k}

where (U, V, W) is Dirichlet (a, B, v); a = aFo(xj—) +3-1,8= aFo{xj} + 1,

Y= aFo(xj,uO 4+ n - j. Assuming the prior guess c.d.f. to be continuous one gets

cTla+B+Y) 1 qial 4 Y
olxy} = Ty @ @y ®
r(a + n) (,)a+n-l. (5.1)

P(aFo(xj)+j)P(a{1-F°(xj)}+n-j+1)
Next consider G[t, t+dt] for some t outside {xl,...,xn}, and let for further

convenience Fo be the integral of a prior guess density fo' Following the
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reasoning above one may show that G has a density at t «¢ (xj, xj+1) equal to

_ I'(a + n) . _ ¥
(5.2)
where
% 41 -l -1
Jla, v] = g g WY (l-u-w) du dw

1 1
c+iy+m-1°

oty n m m
= (%) Iz (1) ()
m=0 i=0

It is (in principle) possible to compute for example the posterior expectation
and the lower and upper 5 percent points for the distribution G based on the
results above.

Now consider the BB approximation method in this situation. It approximates

the complicated G above with

~ A~ % -~ %
G(t) = Pr*,B{O = 8(Fp ) <t}
* *
= Pr*’B{median{X1 ,h..,Xn+a+1} <t}, - (5.3)
* -~ -
where the X, 's are i.i.d. from Fp = (aF0 + nF)/(a + n). Assume for simplicity
that n+at+l is an odd integer, say 2m + 1. Then
G (x,* . <t}
G(t) = Pr*’B () S ¢
= Pr[Bin{2m+l, va(c)} >m+ 1]. (5.4)

Expressions for é{xj} and for the demsity g that G has between data points

can be worked out based on this, and they can be compared with G and g obtained
above. Such a study is not pursued here. Notice that the endpoints of the

BB confidence interval can be found using binomial tables.

Note also that in the non-informative case, where a tends to zero,

both G and G are supported on the data points, with

16



n-1 14n-1
T

@+ 1! 41 ™1 n-j
() ' (Cm)! ( n ) n ( n )

clx.} = (
J

'm

G{x.}
]

5.3. The endpoint of a distribution.

As the final explicit example, consider
8(F) = sup {t: F(t) < 1}.
The exact posterior distribution of 6 based on the Dirichlet process assumption
is particularly simple in this case. One has 6(F) < t if and only if F(t) = 1,
and F(t) 1is Beta {aFo(t) + nf(t), af{l - Fo(t)} + nf(t,w)}. The probability of
a Beta {a, B} variable being 1 is zero unless B = 0, in which case the probability
suddenly is one. Thus G(t) is zero if Fo or F have some mass left for (t,=),

and is one only if Fo(t) = 1 and no x,'s are greater than t, i.e. G is simply

i
concentrated at the single point max {e(Fo), max, xi}.
P K * *

Now let us watch BB at work. SB = 6(FB ) = max {X1 ""’xn+a+1} has
distribution

- *

G(t) = Pr*’B{every X, < t}

+
_ FB(t)n+a 1.

If the right endpoint of the prior guess is =, then G{»} = 1, i.e. the a posteriori

opinion is that the right endpoint of the unknown F is indeed «. This can be
n+a+l
o = (-8 2
compared to G(t) = {a+n Fo(t) + a+n} for t 2.maxi£p ;. If on the other

hand the right endpoint of the prior guess is finite, say B(Fo) = 100, then the

exact a posteriori distribution is concentrated at the sensible point max{100,

max, . xi}, and the BB approximation does not seriously disagree:
- . a o n+a+l
G(t) = {=—F (t) + ==} , if max, o %y <t < 100,
= 1 , 1f t > 100 and max x, < 100,
a - nta+l im 1
= Ao+ o35 F(B)) , 1f 100 <t < maXy o Xy
= 1 , if 100 < max, = X, < t.
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5.4 An artificial example.

The following examﬁle is indeed constructed but hopefully illustrative.
Assume that the abilities and intelligence of a certain interesting minority
population is studied, and assume that 20 individuals from this population
are given a standard IQ test. Let us suppose that the resulting Xl""’XZO

really come from a normal (125, 102) distribution; the data points XyseeesXgq

used below were simulated from this distribution. Some parameters of interest

could be
8(F) = mean of F = [xdF(x),
o(F) = standard deviation of F = [/{x - e(F)}zdF(x)]%,
v(F) = upper 25 percent point of F = F-1(3/4).

We include four different prior distributions in this modest experiment,

namely (1) Fo = normal (100, 152) (from which our own IQs presumably once

were drawn), a = 2; (ii) F_ = normal (100, 152), a = 6; (iii) F_ = normal

(100, 152), a = 10; (iv) Fo ‘uniform on {100, 150], a = 6. The data points

turned out to be 94.8, 114.7, 115.5, 117.5, 119.1, 121.2, 122.6, 124.0, 124.6,
128.7, 130.0, 130.5, 130.8, 131.4, 132.2, 133.5, 134.4, 135.3, 136.4, 144.6.

The empirical mean is 126.07 and the empirical standard deviation is 10.70.

A*
The mean. Histograms of BOOT = 1000 BB values of BB are shown in Figure

1 (i), (i1), (iii), (iv), corresponding to the four combinations of (a, Fo)
listed above. For example, the 1000 values leading to Figure 1 (i) are of the

are i.i.d4. from

5 * e * ( * *} b * *
type 6, = F, ) = mean X1 ,...,X23 where X1 ,...,X23

B

E%-Fo +-§% F. The distributions are unimodal and fairly symmetric, and for

Ak -
all practical purposes continuous (GB has microscopic point masses 1.33 10 31

in each of the 20 data points in Experiment (i), for instance).
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Table 1 lists.95 percent, 90 percent, and 30 percent confidence intervals
for the unknown mean 8 (F), reached by Bayesians (i), (ii), (iii), (iv). Also
listed is the median of the BB posterior distribution, which is also a good
approximation to the Bayesian point estimate using absolute loss. Note that

Bayesian (i), with a = 2, behaves almost like the standard bootstrap user.

TABLE 1

Confidence intervals for the mean, reached by Bayesians (i), (ii), (4ii), (iv).

Bayesian (i) (11) (iii) (iv)
95 percent ([117.74, 129.02] [113.33, 125.60] [110.53, 123.10] [121.41, 130.01]
90 percent [118.71, 128.19] ([114.22, 124.93] [111.55, 122.13] [121.94, 129.33]
80 percent [119.98, 127.12] [115.69, 123.90] [113.10, 121.24] [122.83, 128.69]

median 123.68 120.07 117.37 125.74

The mean functional is simple enough to compute moments of its true
posterior distribution. Ferguson (1973) has shown
a n -
EB{G(F)Idata} = o 0(F) + = e(®), (5.5)

and methods from the same paper can be used to obtain

=1 ra 2 0 2¢fy) 420 — a(F)12
VarB{B(F)ldata} = =7 o 0%(F) + = o?(®) + o o {8(F) - e(M ).
(5.6)
(Here 68(F) = x = ¢ " /n and o2(F) = 1-2 i (x, - x)2.) Hence wé are in a- osition
1=1%1 n “4=1'%3 T X P

to correct the BB intervals of Table 1 for bias and variance, using (4.4) and (4.5).
These changes turn out to be small, and perhaps insignificant compared to
the variation resulting from differences in prior opinion from Bayesian to

Bayesian. As a random example, consider 90 percent intervals for 6 in Experiment (ii).
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The uncorrected BB percentile interval is [é—l(.OS), é_l(.95)] = [114.22,

124.93] as in Table 1. (5.5) above gives Vo = EB{B(F)Idata} 53-100 + %%._

= 120.0573, whereas the BB approximation gives Go =E, B{ B } = (1/1000) iOSO
*b

éB = 119.8952, i.e. € = - .1621, cf. (4.3). The bias corrected BB interval
is accordingly [114.06, 124.77]. Next, 102 = VarB{G(F)ldata} = 9.6501 using
(5.6), whereas %02 = 10.2493, i.,e. 1 + 6§ = 1.0306 in the notation of Section 4.

The bias and variance corrected interval (4.5) becomes [114.55, 124.94].

~A %
The standard deviation. Histograms of BOOT = 1000 values of %

* %
standard deviation of X1 ,...,X20+a+1

(iv), corresponding again to the four experiments. The distributions are

are shown in Figure 2 (i), (ii), (iii),

again unimodal and practically continuous, but not symmetric.

The bias correction procedure of Section 4 turns out to be more important
for this functional than it was for the mean. One may prove, again using
method; of Ferguson (1973), that

- 02(F Y + =B g2(F) + -2 {G(F ) - 8(F) }?],

2 -
Ep{0®(F) |data} n+a+l n+a a+n n+a n+a

cf. (5.6). The 1 - 20 bias corrected‘confidence interval for o(F) is therefore
(6 )2 - €% < o(m) < 1671032 - e}, (5.7)

where € is the difference between the average value of the observed (GB*)2 's

and Eﬁ{oz(F)Idata}, as in (4.3). Notice the similarity between EB{GZ(F)|data}

and VarB{e(F)|data}.

Table 2 gives confidence intervals for o(F) in the four experiments,
both the uncorrected BB and the bias corrected BB interval (5.7). Also listed
are the posterior medians, to be thought of as Bayes point estimates of o(F)

(under absolute loss).
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TABLE 2

Confidence intervals for the standard deviation in Experiments (i), (ii), (iii),

(iv) ; usual BB interval (upper line) and bias corrected BB interval (lower line).

Bayesian (i) (1i) (iii) (iv)
95 percent [7.82, 19.18] [10.94, 21.00] [13.02, 21.44] [7.57, 14.85]
[7.10, 18.90] [10.20, 20.62} [12.43, 21.09] [7.02, 14.58]}
90 percent [8.33, 17.90] [11.83, 20.31] [13.71, 20.77] [8.20, 14.47]
{7.65, 17.60] [11.15, 19.92) [13.15, 20.40] ([7.69, 14.,19]
80 percent [9.45, 16.77] [12.61, 19.27] [14.48, 20.20] [9.03, 13.79]
[8.86, 16.44] [11.96, 18.86] [13.95, 19.82] [8.57, 13.49]

median 13.02 15.92 17.34 11.57

It is also possible to correct the intervals further for possible
inaccuracy of the BB approximation to the variance of o2(F) given data; this
would involve a quite lengthy formula for Eﬁ{o“(F)Idata} - [EB{GZ(F)Idata}]z,

however, and is not pursued here.

The upper quartile. The histograms in Figure 3 (i), (ii), (1ii), (iv)

come from BOOT = 1000 values of ;B* = Y(ﬁB*)_l(3/4). The sample sizes of

the BB samples in question are 23, 27, 31, 27, so we take §B* to be respectively
order statistic 18, order statistic 21, order statistic 24, and order statistic
21. The distribution of ;B* is different from that of éB* and GB* in that it

has most of its mass concentrated on the observed data points, cf. theoretical
calculations for the median in 5.2.

Table 3 lists 95, 90, and 80 percent BB confidence intervals for y(F)

for the four choices of prior distribution of F in its space of all distributioms.
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TABLE 3

Confidence intervals for the upper quartile in Experiments (i), (ii), (iii), (div).

95 percent [130.0, 135.3] [126.0, 135.3] [124.0, 134.4] [130.5, 136.4]
90 percent {130.5, 135.3] [128.7, 134.4] [124.9, 134.4] [130.8, 136.4]
80 percent [130.8, 134.4] [130.0, 134.4] [128.7, 133.5] {131.4, 135.4]

median 132.2 131.4 130.8 133.5
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